2023-03-08 19:43:28来源:中国科学院大学宁波华美医院阅读:175次
中国科学院大学宁波华美医院 罗群
1.AKI与脂质代谢异常
2.脂质代谢参与AKI的可能机制
目前认为脂质代谢异常参与AKI发生发展的可能机制主要为线粒体功能障碍导致的能量生成不足,以及过量脂肪酸在肾小管沉积产生的肾脏脂质毒性。
参与调控肾脏线粒体FAO的关键因子包括过氧化物酶体增殖物激活受体α(PPARα)、PPARγ共激活因子1α(PGC-1α)、沉默信息调节因子(SIRT)及腺苷酸活化蛋白激酶(AMPK)等。
(1)PPARα通过上调细胞分化抗原36(CD36)及CPT酶增加脂肪酸的摄取及转运,并诱导线粒体乙酰辅酶A(CoA)脱氢酶的表达,从而加强FAO。近年来在顺铂诱导的AKI中发现亲环素D在肾近端小管细胞与PPARα结合,导致细胞线粒体易位,继而引起细胞核易位,使PPARα调节的下游靶基因转录受到抑制,最终引起FAO水平降低[6]。
(2)PGC-1α可调控线粒体生物合成促进脂肪酸β氧化。
(3)SIRT3定位于线粒体基质中,通过脱乙酰作用促进FAO;另有研究证实,在顺铂诱导的AKI中,其还通过去乙酰化肝激酶B1(LKB1)和激活腺苷酸活化蛋白激酶(AMPK)信号通路进一步调节线粒体FAO[7]。SIRT5通过抑制过氧化物酶体的酰基辅酶A氧化酶活性进而发挥抑制FAO的作用。在一项动物实验中发现,在缺血诱导和顺铂诱导的AKI中,SIRT5缺陷小鼠与野生型小鼠相比过氧化物酶体中FAO水平增加,肾脏组织损伤较少[8]。
(4)AMPK通过磷酸化PGC-1α促进线粒体的FAO[9]。AMPK的下游靶点还包括乙酰辅酶A羧化酶(ACC),ACC诱导乙酰CoA羧化,生成丙二酰CoA,后者是CPT系统的抑制剂。AKI发生时肾小管细胞中PPARα及PGC-1α表达下调、SIRT活性受抑制、线粒体电子传递链功能障碍、膜电位丧失、活性氧(ROS)释放增加,导致线粒体FAO水平下降,引起肾脏(ATP)缺乏[10]。
AKI发生时肾小管上皮细胞内游离脂肪酸含量上升,过量的游离FAO为脂质过氧化物,引起相关毒性产物脂酰CoA、二酰甘油及神经酰胺的蓄积,进而导致细胞氧化应激水平增加[11]。非酯化脂肪酸可通过解偶联作用干扰线粒体线粒体电子传递链,也可通过开放线粒体通透性转换孔,破坏线粒体结构[12]。脂质过氧化还与AKI中的细胞铁死亡有关。铁死亡是一种特异性依赖铁的调节性细胞死亡,细胞脂质过氧化增加为其特征之一,大量脂质自由基可破坏含有丰富多不饱和脂肪酸细胞膜的结构和功能[13]。
3.靶向调节脂质代谢药物在AKI治疗中的应用
参考文献:
[1]GEWIN L S.Sugar or Fat Renal Tubular Metabolism Reviewed in Health and Disease[J].Nutrients,2021,13(5):1580.
[2]TRAN M T, ZSENGELLER Z K, BERG A H, et al.PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection[J].Nature,2016,531(7595):528-532.
[3]RAO S, WALTERS K B, WILSON L, et al.Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging[J].Am J Physiol Renal Physiol,2016,310(10):F1136-1147.
[4]MORENO-GORDALIZA E, MARAZUELA M D, PASTOR Ó, et al.Lipidomics Reveals Cisplatin-Induced Renal Lipid Alterations during Acute Kidney Injury and Their Attenuation by Cilastatin[J].Int J Mol Sci,2021,22(22):12521.
[5]MARTíN-SAIZ L, GUERRERO-MAUVECIN J, MARTíN-SANCHEZ D, et al.Ferrostatin-1 modulates dysregulated kidney lipids in acute kidney injury[J].J Pathol,2022,257(3):285-299.
[6]JANG H S, NOH M R, JUNG E M, et al.Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury[J].Kidney Int,2020,97(2):327-339.
[7]LI M, LI C M, YE Z C, et al.Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice[J].J Cell Mol Med,2020,24(9):5109-5121.
[8]CHIBA T, PEASLEY K D, CARGILL K R, et al.Sirtuin 5 Regulates Proximal Tubule Fatty Acid Oxidation to Protect against AKI[J].J Am Soc Nephrol,2019,30(12):2384-2398.
[9]LIN P H, DUANN P.Dyslipidemia in Kidney Disorders: Perspectives on Mitochondria Homeostasis and Therapeutic Opportunities[J].Front Physiol,2020,11:1050.
[10]CLARK A J, PARIKH S M.Targeting energy pathways in kidney disease: the roles of sirtuins, AMPK, and PGC1α[J].Kidney Int,2021,99(4):828-840.
[11]CASTRO B B A, FORESTO-NETO O, SARAIVA-CAMARA N O, et al.Renal lipotoxicity: Insights from experimental models[J].Clin Exp Pharmacol Physiol,2021,48(12):1579-1588.
[12]OPAZO-RíOS L, MAS S, MARíN-ROYO G, et al.Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities[J].Int J Mol Sci,2020,21(7):2632.
[13]ZHANG X, LI X.Abnormal Iron and Lipid Metabolism Mediated Ferroptosis in Kidney Diseases and Its Therapeutic Potential[J].Metabolites,2022,12(1):58.
[14]GAO J, GU Z.The Role of Peroxisome Proliferator-Activated Receptors in Kidney Diseases[J].Front Pharmacol,2022,13:832732.
[15]SUN T, WANG D, WANG B, et al.Melatonin attenuates cisplatin-induced acute kidney injury in mice: Involvement of PPARα and fatty acid oxidation[J].Food Chem Toxicol,2022,163:112970.
[16]WANG Z, FU Z, WANG C, et al.ZLN005 protects against ischemia-reperfusion-induced kidney injury by mitigating oxidative stress through the restoration of mitochondrial fatty acid oxidation[J].Am J Transl Res,2021,13(9):10014-10037.
[17]HAN S H, MALAGA-DIEGUEZ L, CHINGA F, et al.Deletion of Lkb1 in Renal Tubular Epithelial Cells Leads to CKD by Altering Metabolism[J].J Am Soc Nephrol,2016,27(2):439-453.
[18]XIONG W, XIONG Z, SONG A, et al.Relieving lipid accumulation through UCP1 suppresses the progression of acute kidney injury by promoting the AMPK/ULK1/autophagy pathway[J].Theranostics,2021,11(10):4637-4654.
[19]VIRMANI M A, CIRULLI M.The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation[J].Int J Mol Sci,2022,23(5):2717.
[20]WANG M, WANG K, LIAO X, et al.Carnitine Palmitoyltransferase System: A New Target for Anti-Inflammatory and Anticancer Therapy?[J].Front Pharmacol,2021,12:760581.