2024-03-21 16:09:03来源:中华医学会器官移植学分会阅读:231次
《中国肾脏移植临床诊疗指南》之18
中国肾脏移植麻醉管理临床实践指南
中华医学会器官移植学分会
一、指南形成方法
表1 2009牛津大学证据分级与推荐意见强度分级标准
二、肾脏移植麻醉前评估
三、麻醉监测指标选择
四、麻醉方式选择
五、麻醉药物选择
六、液体及血流动力学管理
七、肾脏移植术中温度管理
八、肾脏移植术后镇痛
九、小结
执笔作者:朱耀民(西安交通大学第一附属医院),谯瞧(西安交通大学第一附属医院),朱皓阳(西安交通大学第一附属医院),刘畅(西安交通大学第一附属医院)
通讯作者:朱耀民(西安交通大学第一附属医院),
Email:yaomin_zhu@126.com
主审专家:薛武军(西安交通大学第一附属医院),陈刚(华中科技大学同济医学院附属同济医院),朱同玉(复旦大学附属中山医院)。
审稿专家:(按姓氏笔画排序)丁小明(西安交通大学第一附属医院),王长希(中山大学附属第一医院),王钢(吉林大学第一医院),邓斌(西安交通大学第一附属医院),田晓辉(西安交通大学第一附属医院),代贺龙(中南大学湘雅二医院),朱宇麟(西安交通大学第一附属医院),李宁(山西省第二人民医院),李娟(中国科技大学附属第一医院),张伟杰(华中科技大学同济医学院附属同济医院),陈向东(华中科技大学同济医学院附属协和医院),林俊(首都医科大学附属北京友谊医院),林涛(四川大学华西医院),罗佛全(浙江省人民医院),赵晶(北京中日友好医院),董海龙(空军军医大学西京医院),喻文立(天津第一中心医院),温健(西安交通大学第一附属医院),谢克亮(天津医科大学总医院),路志红(空军军医大学西京医院),路万虹(西安交通大学第一附属医院)
利益冲突:所有作者声明无利益冲突
参考文献
[1] VAN LOO A A, VANHOLDER R C, BERNAERT P R, et al. Pretransplantation hemodialysis strategy influences early renal graft function. J Am Soc Nephrol, 1998, 9(3): 473-81.
[2] SCHMIDT R, KUPIN W, DUMLER F, et al. Influence of the pretransplant hematocrit level on early graft function in primary cadaveric renal transplantation. Transplantation, 1993, 55(5): 1034-40.
[3] KIKIĆ Z, LORENZ M, SUNDER-PLASSMANN G, et al. Effect of hemodialysis before transplant surgery on renal allograft function--a pair of randomized controlled trials. Transplantation, 2009, 88(12): 1377-85.
[4] POLDERMANS D, BAX J J, BOERSMA E, et al. Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. Eur Heart J, 2009, 30(22): 2769-812.
[5] DOUKETIS J D, SPYROPOULOS A C, SPENCER F A, et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 2012, 141(2 Suppl): e326S-e50S.
[6] BENAHMED A, KIANDA M, GHISDAL L, et al. Ticlopidine and clopidogrel, sometimes combined with aspirin, only minimally increase the surgical risk in renal transplantation: a case-control study. Nephrol Dial Transplant, 2014, 29(2): 463-6.
[7] OSMAN Y, KAMAL M, SOLIMAN S, et al. Necessity of routine postoperative heparinization in non-risky live-donor renal transplantation: results of a prospective randomized trial. Urology, 2007, 69(4): 647-51.
[8] HORVATH J S, TILLER D J, DUGGIN G G, et al. Low dose heparin and early kidney transplant function. Aust N Z J Med, 1975, 5(6): 537-9.
[9] MOHAN P, MURPHY D M, COUNIHAN A, et al. The role of intraoperative heparin in cyclosporine treated cadaveric renal transplant recipients. J Urol, 1999, 162(3 Pt 1): 682-4.
[10] MURPHY G J, TAHA R, WINDMILL D C, et al. Influence of aspirin on early allograft thrombosis and chronic allograft nephropathy following renal transplantation. Br J Surg, 2001, 88(2): 261-6.
[11] ROBERTSON A J, NARGUND V, GRAY D W, et al. Low dose aspirin as prophylaxis against renal-vein thrombosis in renal-transplant recipients. Nephrol Dial Transplant, 2000, 15(11): 1865-8.
[12] STECHMAN M J, CHARLWOOD N, GRAY D W, et al. Administration of 75 mg of aspirin daily for 28 days is sufficient prophylaxis against renal transplant vein thrombosis. Phlebology, 2007, 22(2): 83-5.
[13] WüTHRICH R P. Factor V Leiden mutation: potential thrombogenic role in renal vein, dialysis graft and transplant vascular thrombosis. Curr Opin Nephrol Hypertens, 2001, 10(3): 409-14.
[14] AKER S, IVENS K, GRABENSEE B, et al. Cardiovascular risk factors and diseases after renal transplantation. Int Urol Nephrol, 1998, 30(6): 777-88.
[15] AREND S M, MALLAT M J, WESTENDORP R J, et al. Patient survival after renal transplantation; more than 25 years follow-up. Nephrol Dial Transplant, 1997, 12(8): 1672-9.
[16] AULL-WATSCHINGER S, KONSTANTIN H, DEMETRIOU D, et al. Pre-transplant predictors of cerebrovascular events after kidney transplantation. Nephrol Dial Transplant, 2008, 23(4): 1429-35.
[17] OSHO A A, CASTLEBERRY A W, SNYDER L D, et al. The Chronic Kidney Disease Epidemiology Collaboration (CKDEPI) equation best characterizes kidney function in patients being considered for lung transplantation. J Heart Lung Transplant, 2014, 33(12): 1248-54.
[18] CHUANG P, GIBNEY E M, CHAN L, et al. Predictors of cardiovascular events and associated mortality within two years of kidney transplantation. Transplant Proc, 2004, 36(5): 1387-91.
[19] COSIO F G, ALAMIR A, YIM S, et al. Patient survival after renal transplantation: I. The impact of dialysis pre-transplant. Kidney Int, 1998, 53(3): 767-72.
[20] DE MATTOS A M, PRATHER J, OLYAEI A J, et al. Cardiovascular events following renal transplantation: role of traditional and transplant-specific risk factors. Kidney Int, 2006, 70(4): 757-64.
[21] DOYLE S E, MATAS A J, GILLINGHAM K, et al. Predicting clinical outcome in the elderly renal transplant recipient. Kidney Int, 2000, 57(5): 2144-50.
[22] FELLSTRöM B, HOLDAAS H, JARDINE A G, et al. Risk factors for reaching renal endpoints in the assessment of Lescol in renal transplantation (ALERT) trial. Transplantation, 2005, 79(2): 205-12.
[23] FEYSSA E, JONES-BURTON C, ELLISON G, et al. Racial/ethnic disparity in kidney transplantation outcomes: influence of donor and recipient characteristics. J Natl Med Assoc, 2009, 101(2): 111-5.
[24] GORDON E J, PROHASKA T R, GALLANT M P, et al. Longitudinal analysis of physical activity, fluid intake, and graft function among kidney transplant recipients. Transpl Int, 2009, 22(10): 990-8.
[25] HERNáNDEZ D, HANSON E, KASISKE M K, et al. Cytomegalovirus disease is not a major risk factor for ischemic heart disease after renal transplantation. Transplantation, 2001, 72(8): 1395-9.
[26] HUMAR A, KERR S R, RAMCHARAN T, et al. Peri-operative cardiac morbidity in kidney transplant recipients: incidence and risk factors. Clin Transplant, 2001, 15(3): 154-8.
[27] ISRANI A K, SNYDER J J, SKEANS M A, et al. Predicting coronary heart disease after kidney transplantation: Patient Outcomes in Renal Transplantation (PORT) Study. Am J Transplant, 2010, 10(2): 338-53.
[28] JARDINE A G, FELLSTRöM B, LOGAN J O, et al. Cardiovascular risk and renal transplantation: post hoc analyses of the Assessment of Lescol in Renal Transplantation (ALERT) Study. Am J Kidney Dis, 2005, 46(3): 529-36.
[29] KASISKE B L. Epidemiology of cardiovascular disease after renal transplantation. Transplantation, 2001, 72(6 Suppl): S5-8.
[30] KASISKE B L, CHAKKERA H A, ROEL J. Explained and unexplained ischemic heart disease risk after renal transplantation. J Am Soc Nephrol, 2000, 11(9): 1735-43.
[31] KASISKE B L, KLINGER D. Cigarette smoking in renal transplant recipients. J Am Soc Nephrol, 2000, 11(4): 753-9.
[32] LENTINE K L, ROCCA REY L A, KOLLI S, et al. Variations in the risk for cerebrovascular events after kidney transplant compared with experience on the waiting list and after graft failure. Clin J Am Soc Nephrol, 2008, 3(4): 1090-101.
[33] LENTINE K L, SCHNITZLER M A, ABBOTT K C, et al. De novo congestive heart failure after kidney transplantation: a common condition with poor prognostic implications. Am J Kidney Dis, 2005, 46(4): 720-33.
[34] MARCéN R, MORALES J M, ARIAS M, et al. Ischemic heart disease after renal transplantation in patients on cyclosporine in Spain. J Am Soc Nephrol, 2006, 17(12 Suppl 3): S286-90.
[35] MATAS A J, PAYNE W D, SUTHERLAND D E, et al. 2,500 living donor kidney transplants: a single-center experience. Ann Surg, 2001, 234(2): 149-64.
[36] MOHAMED ALI A A, ABRAHAM G, MATHEW M, et al. Can serial eGFR, body mass index and smoking predict renal allograft survival in south Asian patients. Saudi J Kidney Dis Transpl, 2009, 20(6): 984-90.
[37] NANKIVELL B J, LAU S G, CHAPMAN J R, et al. Progression of macrovascular disease after transplantation. Transplantation, 2000, 69(4): 574-81.
[38] NOGUEIRA J M, HARIRIAN A, JACOBS S C, et al. Cigarette smoking, kidney function, and mortality after live donor kidney transplant. Am J Kidney Dis, 2010, 55(5): 907-15.
[39] OSCHATZ E, BENESCH T, KODRAS K, et al. Changes of coronary calcification after kidney transplantation. Am J Kidney Dis, 2006, 48(2): 307-13.
[40] OZDEMIR F N, KARAKAN S, AKGUL A, et al. Metabolic syndrome is related to long-term graft function in renal transplant recipients. Transplant Proc, 2009, 41(7): 2808-10.
[41] PONTICELLI C, VILLA M, CESANA B, et al. Risk factors for late kidney allograft failure. Kidney Int, 2002, 62(5): 1848-54.
[42] SIEDLECKI A, FOUSHEE M, CURTIS J J, et al. The impact of left ventricular systolic dysfunction on survival after renal transplantation. Transplantation, 2007, 84(12): 1610-7.
[43] SUNG R S, ALTHOEN M, HOWELL T A, et al. Excess risk of renal allograft loss associated with cigarette smoking. Transplantation, 2001, 71(12): 1752-7.
[44] VALDéS-CAñEDO F, PITA-FERNáNDEZ S, SEIJO-BESTILLEIRO R, et al. Incidence of cardiovascular events in renal transplant recipients and clinical relevance of modifiable variables. Transplant Proc, 2007, 39(7): 2239-41.
[45] YANGO A F, GOHH R Y, MONACO A P, et al. Excess risk of renal allograft loss and early mortality among elderly recipients is associated with poor exercise capacity. Clin Nephrol, 2006, 65(6): 401-7.
[46] GUEYE A S, CHELAMCHARLA M, BAIRD B C, et al. The association between recipient alcohol dependency and long-term graft and recipient survival. Nephrol Dial Transplant, 2007, 22(3): 891-8.
[47] KASISKE B L, MALIK M A, HERZOG C A. Risk-stratified screening for ischemic heart disease in kidney transplant candidates. Transplantation, 2005, 80(6): 815-20.
[48] JELOKA T K, ROSS H, SMITH R, et al. Renal transplant outcome in high-cardiovascular risk recipients. Clin Transplant, 2007, 21(5): 609-14.
[49] PATEL R K, MARK P B, JOHNSTON N, et al. Prognostic value of cardiovascular screening in potential renal transplant recipients: a single-center prospective observational study. Am J Transplant, 2008, 8(8): 1673-83.
[50] CAMPOS L, PARADA B, FURRIEL F, et al. Do intraoperative hemodynamic factors of the recipient influence renal graft function? Transplant Proc, 2012, 44(6): 1800-3.
[51] AULAKH N K, GARG K, BOSE A, et al. Influence of hemodynamics and intra-operative hydration on biochemical outcome of renal transplant recipients. J Anaesthesiol Clin Pharmacol, 2015, 31(2): 174-9.
[52] GINGELL-LITTLEJOHN M, KOH H, AITKEN E, et al. Below-target postoperative arterial blood pressure but not central venous pressure is associated with delayed graft function. Transplant Proc, 2013, 45(1): 46-50.
[53] OTHMAN M M, ISMAEL A Z, HAMMOUDA G E. The impact of timing of maximal crystalloid hydration on early graft function during kidney transplantation. Anesth Analg, 2010, 110(5): 1440-6.
[54] BACCHI G, BUSCAROLI A, FUSARI M, et al. The influence of intraoperative central venous pressure on delayed graft function in renal transplantation: a single-center experience. Transplant Proc, 2010, 42(9): 3387-91.
[55] DE GASPERI A, NARCISI S, MAZZA E, et al. Perioperative fluid management in kidney transplantation: is volume overload still mandatory for graft function? Transplant Proc, 2006, 38(3): 807-9.
[56] KIM K M, KIM G S, HAN M. A comparative study of pulse pressure variation, stroke volume variation and central venous pressure in patients undergoing kidney transplantation. Singapore Med J, 2022, 63(12): 731-9.
[57] FORGET P, LOIS F, DE KOCK M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg, 2010, 111(4): 910-4.
[58] TOYODA D, FUKUDA M, IWASAKI R, et al. The comparison between stroke volume variation and filling pressure as an estimate of right ventricular preload in patients undergoing renal transplantation. J Anesth, 2015, 29(1): 40-6.
[59] CHIN J H, JUN I G, LEE J, et al. Can stroke volume variation be an alternative to central venous pressure in patients undergoing kidney transplantation? Transplant Proc, 2014, 46(10): 3363-6.
[60] DAURI M, COSTA F, SERVETTI S, et al. Combined general and epidural anesthesia with ropivacaine for renal transplantation. Minerva Anestesiol, 2003, 69(12): 873-84.
[61] AKPEK E A, KAYHAN Z, DöNMEZ A, et al. Early postoperative renal function following renal transplantation surgery: effect of anesthetic technique. J Anesth, 2002, 16(2): 114-8.
[62] MURPHY E J. Acute pain management pharmacology for the patient with concurrent renal or hepatic disease. Anaesth Intensive Care, 2005, 33(3): 311-22.
[63] SCHMID S, JUNGWIRTH B. Anaesthesia for renal transplant surgery: an update. Eur J Anaesthesiol, 2012, 29(12): 552-8.
[64] SCHEINGRABER S, REHM M, SEHMISCH C, et al. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology, 1999, 90(5): 1265-70.
[65] WATERS J H, MILLER L R, CLACK S, et al. Cause of metabolic acidosis in prolonged surgery. Crit Care Med, 1999, 27(10): 2142-6.
[66] WATERS J H, GOTTLIEB A, SCHOENWALD P, et al. Normal saline versus lactated Ringer's solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg, 2001, 93(4): 817-22.
[67] YUNOS N M, KIM I B, BELLOMO R, et al. The biochemical effects of restricting chloride-rich fluids in intensive care. Crit Care Med, 2011, 39(11): 2419-24.
[68] O'MALLEY C M N, FRUMENTO R J, HARDY M A, et al. A randomized, double-blind comparison of lactated Ringer's solution and 0.9% NaCl during renal transplantation. Anesth Analg, 2005, 100(5): 1518-24.
[69] COLLINS M G, FAHIM M A, PASCOE E M, et al. Balanced crystalloid solution versus saline in deceased donor kidney transplantation (BEST-Fluids): a pragmatic, double-blind, randomised, controlled trial. Lancet, 2023, 402(10396): 105-17.
[70] POTURA E, LINDNER G, BIESENBACH P, et al. An acetate-buffered balanced crystalloid versus 0.9% saline in patients with end-stage renal disease undergoing cadaveric renal transplantation: a prospective randomized controlled trial. Anesth Analg, 2015, 120(1): 123-9.
[71] WAN S, ROBERTS M A, MOUNT P. Normal saline versus lower-chloride solutions for kidney transplantation. Cochrane Database Syst Rev, 2016, 2016(8): Cd010741.
[72] WEINBERG L, HARRIS L, BELLOMO R, et al. Effects of intraoperative and early postoperative normal saline or Plasma-Lyte 148® on hyperkalaemia in deceased donor renal transplantation: a double-blind randomized trial. Br J Anaesth, 2017, 119(4): 606-15.
[73] ADWANEY A, RANDALL D W, BLUNDEN M J, et al. Perioperative Plasma-Lyte use reduces the incidence of renal replacement therapy and hyperkalaemia following renal transplantation when compared with 0.9% saline: a retrospective cohort study. Clin Kidney J, 2017, 10(6): 838-44.
[74] !!! INVALID CITATION !!! .
[75] GONZáLEZ-CASTRO A, ORTIZ-LASA M, RODRIGUEZ-BORREGAN J C, et al. Influence of Proportion of Normal Saline Administered in the Perioperative Period of Renal Transplantation on Kalemia Levels. Transplant Proc, 2018, 50(2): 569-71.
[76] DAWIDSON I J, AR'RAJAB A. Perioperative fluid and drug therapy during cadaver kidney transplantation. Clin Transpl, 1992: 267-84.
[77] DAWIDSON I J, SANDOR Z F, COORPENDER L, et al. Intraoperative albumin administration affects the outcome of cadaver renal transplantation. Transplantation, 1992, 53(4): 774-82.
[78] ABDALLAH E, EL-SHISHTAWY S, MOSBAH O, et al. Comparison between the effects of intraoperative human albumin and normal saline on early graft function in renal transplantation. Int Urol Nephrol, 2014, 46(11): 2221-6.
[79] SHAH R B, SHAH V R, BUTALA B P, et al. Effect of intraoperative human albumin on early graft function in renal transplantation. Saudi J Kidney Dis Transpl, 2014, 25(6): 1148-53.
[80] WILKES M M, NAVICKIS R J. Patient survival after human albumin administration. A meta-analysis of randomized, controlled trials. Ann Intern Med, 2001, 135(3): 149-64.
[81] AND C F B E. Safety & Availability (Biologics) - FDA Safety Communication: Boxed Warning on increased mortality and severe renal injury, and additional warning on risk of bleeding, for use of hydroxyethyl starch solutions in some settings. Center for Biologics Evaluation and Research.
[82] ZARYCHANSKI R, ABOU-SETTA A M, TURGEON A F, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. Jama, 2013, 309(7): 678-88.
[83] BAGSHAW S M, CHAWLA L S. Hydroxyethyl starch for fluid resuscitation in critically ill patients. Can J Anaesth, 2013, 60(7): 709-13.
[84] WU Y, WU A S, WANG J, et al. Effects of the novel 6% hydroxyethyl starch 130/0.4 on renal function of recipients in living-related kidney transplantation. Chin Med J (Engl), 2010, 123(21): 3079-83.
[85] HOKEMA F, ZIGANSHYNA S, BARTELS M, et al. Is perioperative low molecular weight hydroxyethyl starch infusion a risk factor for delayed graft function in renal transplant recipients? Nephrol Dial Transplant, 2011, 26(10): 3373-8.
[86] LEGENDRE C, THERVET E, PAGE B, et al. Hydroxyethylstarch and osmotic-nephrosis-like lesions in kidney transplantation. Lancet, 1993, 342(8865): 248-9.
[87] CITTANOVA M L, LEBLANC I, LEGENDRE C, et al. Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet, 1996, 348(9042): 1620-2.
[88] GIRAL M, BERTOLA J P, FOUCHER Y, et al. Effect of brain-dead donor resuscitation on delayed graft function: results of a monocentric analysis. Transplantation, 2007, 83(9): 1174-81.
[89] PATEL M S, NIEMANN C U, SALLY M B, et al. The Impact of Hydroxyethyl Starch Use in Deceased Organ Donors on the Development of Delayed Graft Function in Kidney Transplant Recipients: A Propensity-Adjusted Analysis. Am J Transplant, 2015, 15(8): 2152-8.
[90] CARPENTER C B. Blood transfusion effects in kidney transplantation. Yale J Biol Med, 1990, 63(5): 435-43.
[91] LEE K, LEE S, JANG E J, et al. The Association between Peri-Transplant RBC Transfusion and Graft Failure after Kidney Transplantation: A Nationwide Cohort Study. J Clin Med, 2021, 10(16).
[92] HOVAGUIMIAN F, MYLES P S. Restrictive versus Liberal Transfusion Strategy in the Perioperative and Acute Care Settings: A Context-specific Systematic Review and Meta-analysis of Randomized Controlled Trials. Anesthesiology, 2016, 125(1): 46-61.
[93] FLISER D, LAVILLE M, COVIC A, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant, 2012, 27(12): 4263-72.
[94] DALTON R S, WEBBER J N, CAMERON C, et al. Physiologic impact of low-dose dopamine on renal function in the early post renal transplant period. Transplantation, 2005, 79(11): 1561-7.
[95] CARMELLINI M, ROMAGNOLI J, GIULIANOTTI P C, et al. Dopamine lowers the incidence of delayed graft function in transplanted kidney patients treated with cyclosporine A. Transplant Proc, 1994, 26(5): 2626-9.
[96] GRUNDMANN R, KINDLER J, MEIDER G, et al. Dopamine treatment of human cadaver kidney graft recipients: a prospectively randomized trial. Klin Wochenschr, 1982, 60(4): 193-7.
[97] O'DAIR J, EVANS L, RIGG K M, et al. Routine use of renal-dose dopamine during living donor nephrectomy has no beneficial effect to either donor or recipient. Transplant Proc, 2005, 37(2): 637-9.
[98] CIAPETTI M, DI VALVASONE S, DI FILIPPO A, et al. Low-dose dopamine in kidney transplantation. Transplant Proc, 2009, 41(10): 4165-8.
[99] KADIEVA V S, FRIEDMAN L, MARGOLIUS L P, et al. The effect of dopamine on graft function in patients undergoing renal transplantation. Anesth Analg, 1993, 76(2): 362-5.
[100] FERGUSON C J, HILLIS A N, WILLIAMS J D, et al. Calcium-channel blockers and other factors influencing delayed function in renal allografts. Nephrol Dial Transplant, 1990, 5(9): 816-20.
[101] JOHN M, FORD J, HARPER M. Peri-operative warming devices: performance and clinical application. Anaesthesia, 2014, 69(6): 623-38.
[102] PERL T, BRäUER A, QUINTEL M. Prevention of perioperative hypothermia with forced-air warming systems and upper-body blankets. Surg Technol Int, 2006, 15: 19-22.
[103] MADRID E, URRúTIA G, ROQUé I FIGULS M, et al. Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults. Cochrane Database Syst Rev, 2016, 4(4): Cd009016.
[104] SESSLER D I. Perioperative thermoregulation and heat balance. Lancet, 2016, 387(10038): 2655-64.
[105] 吴建永, 雷文华. 中国肾移植围手术期加速康复管理专家共识(2018版). 中华移植杂志:电子版, 2018, 12(4): 6.
[106] TEMIROV T, BEN-DAVID B, MUSTAFIN A, et al. Erector Spinae Plane Block in Management of Pain After Kidney Transplantation. Pain Med, 2019, 20(5): 1053-4.
[107] GURKAN Y, AKSU C, KUS A, et al. Ultrasound guided erector spinae plane block reduces postoperative opioid consumption following breast surgery: A randomized controlled study. J Clin Anesth, 2018, 50: 65-8.
[108] SHARIPOVA V, ALIMOV A, SIYABAYEV F, et al. Erector Spinae Plane Block For Postoperative Analgesia After Kidney Transplant. Exp Clin Transplant, 2022, 20(Suppl 1): 83-5.
[109] PARIKH B K, WAGHMARE V, SHAH V R, et al. The analgesic efficacy of continuous transversus abdominis plane block in renal transplant recipients. J Anaesthesiol Clin Pharmacol, 2015, 31(4): 531-4.
[110] MCDONNELL J G, CURLEY G, CARNEY J, et al. The analgesic efficacy of transversus abdominis plane block after cesarean delivery: a randomized controlled trial. Anesth Analg, 2008, 106(1): 186-91, table of contents.
[111] MCDONNELL J G, O'DONNELL B, CURLEY G, et al. The analgesic efficacy of transversus abdominis plane block after abdominal surgery: a prospective randomized controlled trial. Anesth Analg, 2007, 104(1): 193-7.
[112] BELAVY D, COWLISHAW P J, HOWES M, et al. Ultrasound-guided transversus abdominis plane block for analgesia after Caesarean delivery. Br J Anaesth, 2009, 103(5): 726-30.
[113] EL-DAWLATLY A A, TURKISTANI A, KETTNER S C, et al. Ultrasound-guided transversus abdominis plane block: description of a new technique and comparison with conventional systemic analgesia during laparoscopic cholecystectomy. Br J Anaesth, 2009, 102(6): 763-7.
[114] NIRAJ G, SEARLE A, MATHEWS M, et al. Analgesic efficacy of ultrasound-guided transversus abdominis plane block in patients undergoing open appendicectomy. Br J Anaesth, 2009, 103(4): 601-5.
[115] GOPWANI S R, ROSENBLATT M A. Transversus abdominis plane block in renal allotransplant recipients: A retrospective chart review. Saudi J Anaesth, 2016, 10(4): 375-8.
[116] GHANEM C I, PEREZ M J, MANAUTOU J E, et al. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity. Pharmacol Res, 2016, 109: 119-31.
[117] REXRODE K M, BURING J E, GLYNN R J, et al. Analgesic use and renal function in men. JAMA, 2001, 286(3): 315-21.
[118] ALJADHEY H, TU W, HANSEN R A, et al. Comparative effects of non-steroidal anti-inflammatory drugs (NSAIDs) on blood pressure in patients with hypertension. BMC Cardiovasc Disord, 2012, 12: 93.
[119] STILLMAN M T, SCHLESINGER P A. Nonsteroidal anti-inflammatory drug nephrotoxicity. Should we be concerned? Arch Intern Med, 1990, 150(2): 268-70.
[120] ARFè A, SCOTTI L, VARAS-LORENZO C, et al. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. Bmj, 2016, 354: i4857.