2024-03-27 15:32:11来源:中华医学会器官移植学分会阅读:157次
《中国肾脏移植临床诊疗指南》之48
肾脏移植多重耐药细菌感染临床诊疗指南
中华医学会器官移植学分会
一、指南形成方法
表1 2009牛津大学证据分级与推荐意见强度分级标准
二、推荐意见及说明
表3 MDR-GNB治疗常用药物的使用剂量和方法表(肝肾功能调整)
三、小结
执笔作者:赵闻雨(海军军医大学附属长海医院),徐溯(复旦大学附属华山医院),崔瑜(浙江大学第一附属医院)、吴楠楠(上海市噬菌体研究所)
通信作者:
张雷(海军军医大学附属长海医院)
Email:13818082992@139.com;
黄海辉(复旦大学附属华山医院)
Email:huanghaihui@fudan.edu.cn;
吴建永(浙江大学医学院第一附属医院)
Email:wujianyong1964@zju.edu.cn;
林俊(首都医科大学附属北京友谊医院)
Email:13601355682@136.com。
主审专家:薛武军(西安交通大学第一附属医院),门同义(内蒙古医科大学附属医院),朱有华(海军军医大学附属长海医院),陈刚(华中科技大学同济医学院附属同济医院)
审稿专家:(按姓氏笔画排序)王长希(中山大学附属第一医院),田普训(西安交通大学第一附属医院),朱兰(华中科技大学同济医学院附属同济医院),朱同玉(复旦大学附属中山医院),刘龙山(中山大学附属第一医院),刘洪涛(中国科学技术大学附属第一医院),李新长(江西省人民医院),张明(上海交通大学医学院附属仁济医院),林俊(首都医科大学附属北京友谊医院),林涛(四川大学华西医院),尚文俊(郑州大学第一附属医院),周洪澜(吉林大学第一医院),郑瑾(西安交通大学第一附属医院),胡小鹏(首都医科大学附属北京朝阳医院), 董建辉(广西医科大学第二附属医院),曾力(海军军医大学附属长海医院)
参考文献
[1] G. PATEL, M.M. RANA, S. HUPRIKAR. Multidrug-resistant bacteria in organ transplantation: an emerging threat with limited therapeutic options. Curr Infect Dis Rep, 2013, 15(6):504-13.
[2] 李钢, 石炳毅, 巨春蓉. 器官移植术后耐药菌感染诊疗技术规范(2019版). 器官移植, 2019, 10(04):352-358.
[3] C. VAN DELDEN, S. STAMPF, H.H. HIRSCH, et al. Burden and Timeline of Infectious Diseases in the First Year After Solid Organ Transplantation in the Swiss Transplant Cohort Study. Clin Infect Dis, 2020, 71(7):e159-e169.
[4] 李钢, 石炳毅, 巨春蓉, et al. 实体器官移植术后感染诊疗技术规范(2019版)——总论与细菌性肺炎. 器官移植, 2019, 10(04):343-351.
[5] I. ORIOL, N. SABÉ, A.F. SIMONETTI, et al. Changing trends in the aetiology, treatment and outcomes of bloodstream infection occurring in the first year after solid organ transplantation: a single-centre prospective cohort study. Transpl Int, 2017, 30(9):903-913.
[6] M.N. AL-HASAN, R.R. RAZONABLE, J.E. ECKEL-PASSOW, et al. Incidence rate and outcome of Gram-negative bloodstream infection in solid organ transplant recipients. Am J Transplant, 2009, 9(4):835-43.
[7] L. LINARES, J.F. GARCÍA-GOEZ, C. CERVERA, et al. Early bacteremia after solid organ transplantation. Transplant Proc, 2009, 41(6):2262-4.
[8] L. LINARES, C. CERVERA, F. COFÁN, et al. Risk factors for infection with extended-spectrum and AmpC beta-lactamase-producing gram-negative rods in renal transplantation. Am J Transplant, 2008, 8(5):1000-5.
[9] E.B. AGUIAR, L.C. MACIEL, M. HALPERN, et al. Outcome of bacteremia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae after solid organ transplantation. Transplant Proc, 2014, 46(6):1753-6.
[10] C. BELLIER, F. BERT, F. DURAND, et al. Risk factors for Enterobacteriaceae bacteremia after liver transplantation. Transpl Int, 2008, 21(8):755-63.
[11] B. PILMIS, A. SCEMLA, O. JOIN-LAMBERT, et al. ESBL-producing enterobacteriaceae-related urinary tract infections in kidney transplant recipients: incidence and risk factors for recurrence. Infect Dis (Lond), 2015, 47(10):714-8.
[12] J. GOŁĘBIEWSKA, A. TARASEWICZ, A. DĘBSKA-ŚLIZIEŃ, et al. Klebsiella spp urinary tract infections during first year after renal transplantation. Transplant Proc, 2014, 46(8):2748-51.
[13] H.S. PINHEIRO, A.M. MITUIASSU, M. CARMINATTI, et al. Urinary tract infection caused by extended-spectrum beta-lactamase-producing bacteria in kidney transplant patients. Transplant Proc, 2010, 42(2):486-7.
[14] M. ALEVIZAKOS, D. NASIOUDIS, E. MYLONAKIS. Urinary tract infections caused by ESBL-producing Enterobacteriaceae in renal transplant recipients: A systematic review and meta-analysis. Transpl Infect Dis, 2017, 19(6).
[15] T.Y. MEN, J.N. WANG, H. LI, et al. Prevalence of multidrug-resistant gram-negative bacilli producing extended-spectrum β-lactamases (ESBLs) and ESBL genes in solid organ transplant recipients. Transpl Infect Dis, 2013, 15(1):14-21.
[16] S.M. POUCH, G. PATEL. Multidrug-resistant Gram-negative bacterial infections in solid organ transplant recipients-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant, 2019, 33(9):e13594.
[17] M. GIANNELLA, M. BARTOLETTI, M. CONTI, et al. Carbapenemase-producing Enterobacteriaceae in transplant patients. J Antimicrob Chemother, 2021, 76(Suppl 1):i27-i39.
[18] 汪复,张婴元, 实用抗感染治疗学.2版.北京:人民卫生出版社,2020:第二章.
[19] M. CASTANHEIRA, J.H. KIMBROUGH, S. DEVRIES, et al. Trends of β-Lactamase Occurrence Among Escherichia coli and Klebsiella pneumoniae in United States Hospitals During a 5-Year Period and Activity of Antimicrobial Agents Against Isolates Stratified by β-Lactamase Type. Open Forum Infect Dis, 2023, 10(2):ofad038.
[20] B. BEDENIĆ, T. MEŠTROVIĆ. Mechanisms of Resistance in Gram-Negative Urinary Pathogens: From Country-Specific Molecular Insights to Global Clinical Relevance. Diagnostics (Basel), 2021, 11(5).
[21] T. SAWA, K. KOOGUCHI, K. MORIYAMA. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care, 2020, 8:13.
[22] CHINET2023年上半年细菌耐药监测结果.
[23] A.M. DARIE, N. KHANNA, K. JAHN, et al. Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): a multicentre, randomised controlled trial. Lancet Respir Med, 2022, 10(9):877-887.
[24] 李大伟, 高芳, 陈若洋, et al. GeneXpert联合灌洗液培养在肾移植供者来源CRKP检测中的临床应用. 中华器官移植杂志, 2020, 41(04):232-236.
[25] 中华医学会检验医学分会临床微生物学组, 中华医学会微生物学与免疫学分会临床微生物学组, 中国医疗保健国际交流促进会临床微生物与感染分会. 宏基因组高通量测序技术应用于感染性疾病病原检测中国专家共识. 中华检验医学杂志, 2021(02):107-120.
[26] L. CHAO, J. LI, Y. ZHANG, et al. Application of next generation sequencing-based rapid detection platform for microbiological diagnosis and drug resistance prediction in acute lower respiratory infection. Ann Transl Med, 2020, 8(24):1644.
[27] M. ZENG, J. XIA, Z. ZONG, et al. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli. J Microbiol Immunol Infect, 2023, 56(4):653-671.
[28] 喻华, 徐雪松, 李敏, et al. 肠杆菌目细菌碳青霉烯酶的实验室检测和临床报告规范专家共识(第二版). 中国感染与化疗杂志, 2022, 22(04):463-474.
[29] M. BOATTINI, G. BIANCO, M. IANNACCONE, et al. Detection of Carbapenemase and CTX-M Encoding Genes Directly from Bronchoalveolar Lavage Using the CRE and ESBL ELITe MGB Assays: Toward Early and Optimal Antibiotic Therapy Management of Critically Ill Patients with Pneumonia. Microb Drug Resist, 2021, 27(2):241-246.
[30] M.J. SATLIN, L. CHEN, A. GOMEZ-SIMMONDS, et al. Impact of a Rapid Molecular Test for Klebsiella pneumoniae Carbapenemase and Ceftazidime-Avibactam Use on Outcomes After Bacteremia Caused by Carbapenem-Resistant Enterobacterales. Clin Infect Dis, 2022, 75(12):2066-2075.
[31] 周华, 李光辉, 陈佰义, et al. 中国产超广谱β-内酰胺酶肠杆菌科细菌感染应对策略专家共识. 中华医学杂志, 2014(24):1847-1856.
[32] 《Β-内酰胺类抗生素/Β-内酰胺酶抑制剂复方制剂临床应用专家共识》编写专家组. β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版). 中华医学杂志, 2020(10):738-747.
[33] P.D. TAMMA, S.L. AITKEN, R.A. BONOMO, et al. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin Infect Dis, 2023.
[34] P.N.A. HARRIS, P.A. TAMBYAH, D.C. LYE, et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. Jama, 2018, 320(10):984-994.
[35] B.L. DE JONGE, J.A. KARLOWSKY, K.M. KAZMIERCZAK, et al. In Vitro Susceptibility to Ceftazidime-Avibactam of Carbapenem-Nonsusceptible Enterobacteriaceae Isolates Collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrob Agents Chemother, 2016, 60(5):3163-9.
[36] I. SPILIOPOULOU, K. KAZMIERCZAK, G.G. STONE. In vitro activity of ceftazidime/avibactam against isolates of carbapenem-non-susceptible Enterobacteriaceae collected during the INFORM global surveillance programme (2015-17). J Antimicrob Chemother, 2020, 75(2):384-391.
[37] R. HAN, Q. SHI, S. WU, et al. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China. Front Cell Infect Microbiol, 2020, 10:314.
[38] P. YANG, Y. LI, X. WANG, et al. Efficacy and safety of ceftazidime-avibactam versus polymyxins in the treatment of carbapenem-resistant Enterobacteriaceae infection: a systematic review and meta-analysis. BMJ Open, 2023, 13(5):e070491.
[39] J. CHEN, Q. HU, P. ZHOU, et al. Ceftazidime-avibactam versus polymyxins in treating patients with carbapenem-resistant Enterobacteriaceae infections: a systematic review and meta-analysis. Infection, 2024, 52(1):19-28.
[40] M. FALCONE, G.L. DAIKOS, G. TISEO, et al. Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase-Producing Enterobacterales. Clin Infect Dis, 2021, 72(11):1871-1878.
[41] 中国碳青霉烯耐药肠杆菌科细菌感染诊治与防控专家共识编写组, 中国医药教育协会感染疾病专业委员会, 中华医学会细菌感染与耐药防控专业委员会. 中国碳青霉烯耐药肠杆菌科细菌感染诊治与防控专家共识. 中华医学杂志, 2021(36):2850-2860.
[42] L. ZHA, L. PAN, J. GUO, et al. Effectiveness and Safety of High Dose Tigecycline for the Treatment of Severe Infections: A Systematic Review and Meta-Analysis. Adv Ther, 2020, 37(3):1049-1064.
[43] 临床常用四环素类药物合理应用多学科专家共识编写组, 中华预防医学会医院感染控制分会, 中国药理学会临床药理分会. 临床常用四环素类药物合理应用多学科专家共识. 中华医学杂志, 2023(30):2281-2296.
[44] X. SHI, C. ZUO, L. YU, et al. Real-World Data of Tigecycline-Associated Drug-Induced Liver Injury Among Patients in China: A 3-year Retrospective Study as Assessed by the Updated RUCAM. Front Pharmacol, 2021, 12:761167.
[45] N. CUI, H. CAI, Z. LI, et al. Tigecycline-induced coagulopathy: a literature review. Int J Clin Pharm, 2019, 41(6):1408-1413.
[46] J.F. TIMSIT, E. RUPPÉ, F. BARBIER, et al. Bloodstream infections in critically ill patients: an expert statement. Intensive Care Med, 2020, 46(2):266-284.
[47] Y. LI, L. CUI, F. XUE, et al. Synergism of eravacycline combined with other antimicrobial agents against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. J Glob Antimicrob Resist, 2022, 30:56-59.
[48] G.L. XIA, R.L. JIANG. Efficacy and safety of polymyxin B in carbapenem-resistant gram-negative organisms infections. BMC Infect Dis, 2021, 21(1):1034.
[49] G.L. XIA, X. XU, X.B. YOU, et al. Efficacy and nephrotoxicity of polymyxin B in elderly patients with carbapenem resistant bacterial infection. Ann Clin Microbiol Antimicrob, 2023, 22(1):101.
[50] Q. LU, G.H. LI, Q. QU, et al. Clinical Efficacy of Polymyxin B in Patients Infected with Carbapenem-Resistant Organisms. Infect Drug Resist, 2021, 14:1979-1988.
[51] D. PENG, F. ZHANG, Y. CHEN, et al. Efficacy and safety of colistin sulfate in the treatment of infections caused by carbapenem-resistant organisms: a multicenter retrospective cohort study. J Thorac Dis, 2023, 15(4):1794-1804.
[52] Y. WU, S. JIANG, D. LI, et al. Clinical Efficacy and Safety of Colistin Sulfate in the Treatment of Carbapenem-Resistant Organism Infections in Patients with Hematological Diseases. Infect Dis Ther, 2024, 13(1):141-154.
[53] X. LU, C. ZHONG, Y. LIU, et al. Efficacy and safety of polymyxin E sulfate in the treatment of critically ill patients with carbapenem-resistant organism infections. Front Med (Lausanne), 2022, 9:1067548.
[54] M. HAO, Y. YANG, Y. GUO, et al. Combination Regimens with Colistin Sulfate versus Colistin Sulfate Monotherapy in the Treatment of Infections Caused by Carbapenem-Resistant Gram-Negative Bacilli. Antibiotics (Basel), 2022, 11(10).
[55] S.W.S. YAPA, J. LI, K. PATEL, et al. Pulmonary and systemic pharmacokinetics of inhaled and intravenous colistin methanesulfonate in cystic fibrosis patients: targeting advantage of inhalational administration. Antimicrob Agents Chemother, 2014, 58(5):2570-9.
[56] B.T. TSUJI, J.M. POGUE, A.P. ZAVASCKI, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy, 2019, 39(1):10-39.
[57] M. TUMBARELLO, E.M. TRECARICHI, A. CORONA, et al. Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Klebsiella pneumoniae Carbapenemase-producing K. pneumoniae. Clin Infect Dis, 2019, 68(3):355-364.
[58] M. TUMBARELLO, F. RAFFAELLI, M. GIANNELLA, et al. Ceftazidime-Avibactam Use for Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Infections: A Retrospective Observational Multicenter Study. Clin Infect Dis, 2021, 73(9):1664-1676.
[59] O. LIMA, A. SOUSA, R. LONGUEIRA-SUÁREZ, et al. Ceftazidime-avibactam treatment in bacteremia caused by OXA-48 carbapenemase-producing Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis, 2022, 41(9):1173-1182.
[60] J.J. CASTÓN, A. CANO, I. PÉREZ-CAMACHO, et al. Impact of ceftazidime/avibactam versus best available therapy on mortality from infections caused by carbapenemase-producing Enterobacterales (CAVICOR study). J Antimicrob Chemother, 2022, 77(5):1452-1460.
[61] A. SOUSA, M.T. PÉREZ-RODRÍGUEZ, A. SOTO, et al. Effectiveness of ceftazidime/avibactam as salvage therapy for treatment of infections due to OXA-48 carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother, 2018, 73(11):3170-3175.
[62] J. CHEN, Y. LIU, W. JIA, et al. In Vitro Activities of Aztreonam-Avibactam, Eravacycline, Cefoselis, and Other Comparators against Clinical Enterobacterales Isolates: a Multicenter Study in China, 2019. Microbiol Spectr, 2023, 11(3):e0487322.
[63] T.P. LODISE, J.N. O'DONNELL, S. RAJA, et al. Safety of Ceftazidime-Avibactam in Combination with Aztreonam (COMBINE) in a Phase I, Open-Label Study in Healthy Adult Volunteers. Antimicrob Agents Chemother, 2022, 66(12):e0093522.
[64] Y. WANG, J. WANG, R. WANG, et al. Resistance to ceftazidime-avibactam and underlying mechanisms. J Glob Antimicrob Resist, 2020, 22:18-27.
[65] 丁丽, 陈佰义, 李敏, et al. 碳青霉烯类耐药革兰阴性菌联合药敏试验及报告专家共识. 中国感染与化疗杂志, 2023, 23(01):80-90.
[66] Y. CAI, D. CHAI, R. WANG, et al. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother, 2012, 67(7):1607-15.
[67] O.M. EL-HALFAWY, M.A. VALVANO. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin Microbiol Rev, 2015, 28(1):191-207.
[68] J.S. HAWLEY, C.K. MURRAY, J.H. JORGENSEN. Colistin heteroresistance in acinetobacter and its association with previous colistin therapy. Antimicrob Agents Chemother, 2008, 52(1):351-2.
[69] 张思琴, 卢鸿, 曹建明, et al. 体外联合用药对黏菌素异质性耐药鲍曼不动杆菌的抗菌活性研究. 中华微生物学和免疫学杂志, 2018(8):593-598.
[70] G. TISEO, G. BRIGANTE, D.R. GIACOBBE, et al. Diagnosis and management of infections caused by multidrug-resistant bacteria: guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int J Antimicrob Agents, 2022, 60(2):106611.
[71] M.F.A. ABDELSALAM, M.S. ABDALLA, H.S.E. EL-ABHAR. Prospective, comparative clinical study between high-dose colistin monotherapy and colistin-meropenem combination therapy for treatment of hospital-acquired pneumonia and ventilator-associated pneumonia caused by multidrug-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist, 2018, 15:127-135.
[72] M.E. FALAGAS, P. LOURIDA, P. POULIKAKOS, et al. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother, 2014, 58(2):654-63.
[73] A.P. MAGIORAKOS, A. SRINIVASAN, R.B. CAREY, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect, 2012, 18(3):268-81.
[74] 中华医学会呼吸病学分会感染学组. 中国铜绿假单胞菌下呼吸道感染诊治专家共识(2022年版). 中华结核和呼吸杂志, 2022(08):739-752.
[75] Z.R. ZENG, W.P. WANG, M. HUANG, et al. Mechanisms of carbapenem resistance in cephalosporin-susceptible Pseudomonas aeruginosa in China. Diagn Microbiol Infect Dis, 2014, 78(3):268-70.
[76] E.H. CAMPANA, D.E. XAVIER, F.V. PETROLINI, et al. Carbapenem-resistant and cephalosporin-susceptible: a worrisome phenotype among Pseudomonas aeruginosa clinical isolates in Brazil. Braz J Infect Dis, 2017, 21(1):57-62.
[77] S. LI, X. JIA, C. LI, et al. Carbapenem-resistant and cephalosporin-susceptible Pseudomonas aeruginosa: a notable phenotype in patients with bacteremia. Infect Drug Resist, 2018, 11:1225-1235.
[78] R. ZAIDENSTEIN, A. MILLER, R. TAL-JASPER, et al. Therapeutic Management of Pseudomonas aeruginosa Bloodstream Infection Non-Susceptible to Carbapenems but Susceptible to "Old" Cephalosporins and/or to Penicillins. Microorganisms, 2018, 6(1).
[79] Y. KHALILI, M. YEKANI, H.R. GOLI, et al. Characterization of carbapenem-resistant but cephalosporin-susceptible Pseudomonas aeruginosa. Acta Microbiol Immunol Hung, 2019, 66(4):529-540.
[80] M. GAJDÁCS. Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa in Urinary Tract Infections: Opportunity for Colistin Sparing. Antibiotics (Basel), 2020, 9(4).
[81] C.M. GILL, E. AKTAŞ, W. ALFOUZAN, et al. Elevated MICs of Susceptible Antipseudomonal Cephalosporins in Non-Carbapenemase-Producing, Carbapenem-Resistant Pseudomonas aeruginosa: Implications for Dose Optimization. Antimicrob Agents Chemother, 2021, 65(11):e0120421.
[82] Y. GUO, R. HAN, B. JIANG, et al. In Vitro Activity of New β-Lactam-β-Lactamase Inhibitor Combinations and Comparators against Clinical Isolates of Gram-Negative Bacilli: Results from the China Antimicrobial Surveillance Network (CHINET) in 2019. Microbiol Spectr, 2022, 10(4):e0185422.
[83] C. XU, F. ZENG, Y. HUANG, et al. Clinical efficacy of ceftazidime/avibactam combination therapy for severe hospital-acquired pulmonary infections caused by carbapenem-resistant and difficult-to-treat Pseudomonas aeruginosa. Int J Antimicrob Agents, 2024, 63(1):107021.
[84] H. YAO, W. ZHAO, D. JIAO, et al. Global distribution, dissemination and overexpression of potent multidrug efflux pump RE-CmeABC in Campylobacter jejuni. J Antimicrob Chemother, 2021, 76(3):596-600.
[85] 陈佰义, 何礼贤, 胡必杰, et al. 中国鲍曼不动杆菌感染诊治与防控专家共识. 中华医学杂志, 2012(02):76-85.
[86] J.R. LENHARD, N.M. SMITH, Z.P. BULMAN, et al. High-Dose Ampicillin-Sulbactam Combinations Combat Polymyxin-Resistant Acinetobacter baumannii in a Hollow-Fiber Infection Model. Antimicrob Agents Chemother, 2017, 61(3).
[87] J.C. ABDUL-MUTAKABBIR, J. YIM, L. NGUYEN, et al. In Vitro Synergy of Colistin in Combination with Meropenem or Tigecycline against Carbapenem-Resistant Acinetobacter baumannii. Antibiotics (Basel), 2021, 10(7).
[88] M. BEGANOVIC, K.E. DAFFINEE, M.K. LUTHER, et al. Minocycline Alone and in Combination with Polymyxin B, Meropenem, and Sulbactam against Carbapenem-Susceptible and -Resistant Acinetobacter baumannii in an In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother, 2021, 65(3).
[89] M.J. RODRÍGUEZ-HERNÁNDEZ, L. CUBEROS, C. PICHARDO, et al. Sulbactam efficacy in experimental models caused by susceptible and intermediate Acinetobacter baumannii strains. J Antimicrob Chemother, 2001, 47(4):479-82.
[90] S.Y. JUNG, S.H. LEE, S.Y. LEE, et al. Antimicrobials for the treatment of drug-resistant Acinetobacter baumannii pneumonia in critically ill patients: a systemic review and Bayesian network meta-analysis. Crit Care, 2017, 21(1):319.
[91] J. LIU, Y. SHU, F. ZHU, et al. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: A systematic review and network meta-analysis. J Glob Antimicrob Resist, 2021, 24:136-147.
[92] S.F. ASSIMAKOPOULOS, V. KARAMOUZOS, A. LEFKADITI, et al. Triple combination therapy with high-dose ampicillin/sulbactam, high-dose tigecycline and colistin in the treatment of ventilator-associated pneumonia caused by pan-drug resistant Acinetobacter baumannii: a case series study. Infez Med, 2019, 27(1):11-16.
[93] C.C. LAI, C.C. CHEN, Y.C. LU, et al. In vitro activity of cefoperazone and cefoperazone-sulbactam against carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Infect Drug Resist, 2019, 12:25-29.
[94] L. WANG, Y. CHEN, R. HAN, et al. Sulbactam Enhances in vitro Activity of β-Lactam Antibiotics Against Acinetobacter baumannii. Infect Drug Resist, 2021, 14:3971-3977.
[95] H. AYDEMIR, D. AKDUMAN, N. PISKIN, et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect, 2013, 141(6):1214-22.
[96] E. DURANTE-MANGONI, G. SIGNORIELLO, R. ANDINI, et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis, 2013, 57(3):349-58.
[97] R. SIRIJATUPHAT, V. THAMLIKITKUL. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother, 2014, 58(9):5598-601.
[98] D. MAKRIS, E. PETINAKI, V. TSOLAKI, et al. Colistin versus Colistin Combined with Ampicillin-Sulbactam for Multiresistant Acinetobacter baumannii Ventilator-associated Pneumonia Treatment: An Open-label Prospective Study. Indian J Crit Care Med, 2018, 22(2):67-77.
[99] M. PAUL, G.L. DAIKOS, E. DURANTE-MANGONI, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis, 2018, 18(4):391-400.
[100] H.J. PARK, J.H. CHO, H.J. KIM, et al. Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: A randomised controlled trial. J Glob Antimicrob Resist, 2019, 17:66-71.
[101] Trial for the Treatment of Extensively Drug-Resistant Gram-negative Bacilli (OVERCOME)https://classic.clinicaltrials.gov/ct2/show/results/NCT01597973.
[102] T.F. DURAND-RÉVILLE, S. GULER, J. COMITA-PREVOIR, et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat Microbiol, 2017, 2:17104.
[103] A. KARRULI, A. MIGLIACCIO, S. POURNARAS, et al. Cefiderocol and Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii. Antibiotics (Basel), 2023, 12(12).
[104] K.S. KAYE, A.F. SHORR, R.G. WUNDERINK, et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: a multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect Dis, 2023, 23(9):1072-1084.
[105] V.L. YU, T.P. FELEGIE, R.B. YEE, et al. Synergistic interaction in vitro with use of three antibiotics simultaneously against Pseudomonas maltophilia. J Infect Dis, 1980, 142(4):602-7.
[106] S.A. ZELENITSKY, H. IACOVIDES, R.E. ARIANO, et al. Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis, 2005, 51(1):39-43.
[107] C. WEI, W. NI, X. CAI, et al. Evaluation of Trimethoprim/Sulfamethoxazole (SXT), Minocycline, Tigecycline, Moxifloxacin, and Ceftazidime Alone and in Combinations for SXT-Susceptible and SXT-Resistant Stenotrophomonas maltophilia by In Vitro Time-Kill Experiments. PLoS One, 2016, 11(3):e0152132.
[108] M. BIAGI, A. VIALICHKA, M. JURKOVIC, et al. Activity of Cefiderocol Alone and in Combination with Levofloxacin, Minocycline, Polymyxin B, or Trimethoprim-Sulfamethoxazole against Multidrug-Resistant Stenotrophomonas maltophilia. Antimicrob Agents Chemother, 2020, 64(9).
[109] R.R. MUDER, A.P. HARRIS, S. MULLER, et al. Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia: a prospective, multicenter study of 91 episodes. Clin Infect Dis, 1996, 22(3):508-12.
[110] H. ARAOKA, M. BABA, C. OKADA, et al. Evaluation of trimethoprim-sulfamethoxazole based combination therapy against Stenotrophomonas maltophilia: in vitro effects and clinical efficacy in cancer patients. Int J Infect Dis, 2017, 58:18-21.
[111] M.D. SHAH, K.E. COE, Z. EL BOGHDADLY, et al. Efficacy of combination therapy versus monotherapy in the treatment of Stenotrophomonas maltophilia pneumonia. J Antimicrob Chemother, 2019, 74(7):2055-2059.
[112] J.T. HY CHANG, N YUSOFF, H MOHAMED, YY CAI, TP LIM, J SIM, TT TAN, AL KWA, In vitro activity of eravacycline against extensively-drug resistant (XDR) Acinetobacter baumannii and Stenotrophomonas maltophilia, 31st ECCMID, 2021.
[113] 国家卫生健康委合理用药专家委员会, 耐药革兰氏阳性菌感染诊疗手册.2版.北京:人民卫生出版社,2022:第三章.
[114] 耐甲氧西林金黄色葡萄球菌感染防治专家共识2011年更新版. 中华实验和临床感染病杂志(电子版), 2011, 5(03):372-384.
[115] C. LIU, A. BAYER, S.E. COSGROVE, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis, 2011, 52(3):e18-55.
[116] R.G. WUNDERINK, M.S. NIEDERMAN, M.H. KOLLEF, et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis, 2012, 54(5):621-9.
[117] E. RUBINSTEIN, S. CAMMARATA, T. OLIPHANT, et al. Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: a randomized, double-blind, multicenter study. Clin Infect Dis, 2001, 32(3):402-12.
[118] R.G. WUNDERINK, S.K. CAMMARATA, T.H. OLIPHANT, et al. Continuation of a randomized, double-blind, multicenter study of linezolid versus vancomycin in the treatment of patients with nosocomial pneumonia. Clin Ther, 2003, 25(3):980-92.
[119] H.Y. LIU, X.F. BI, Y.J. WANG, et al. Compassionate use of contezolid in a toddler with severe community-acquired pneumonia induced by staphylococcus aureus: a case report and follow-up. Front Pediatr, 2024, 12:1321447.
[120] K. WANG, Y. HU, Z. DUAN, et al. Severe Community-Acquired Pneumonia Caused by Methicillin-Sensitive Staphylococcus aureus: Successfully Treated with Contezolid - A Case Report and Literature Review. Infect Drug Resist, 2023, 16:3233-3242.
[121] V.G. FOWLER, JR., H.W. BOUCHER, G.R. COREY, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med, 2006, 355(7):653-65.
[122] F. GUDIOL, J.M. AGUADO, B. ALMIRANTE, et al. Executive summary of the diagnosis and treatment of bacteremia and endocarditis due to Staphylococcus aureus. A clinical guideline from the Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC). Enferm Infecc Microbiol Clin, 2015, 33(9):626-32.
[123] J.M. PERICÀS, A. MORENO, M. ALMELA, et al. Efficacy and safety of fosfomycin plus imipenem versus vancomycin for complicated bacteraemia and endocarditis due to methicillin-resistant Staphylococcus aureus: a randomized clinical trial. Clin Microbiol Infect, 2018, 24(6):673-676.
[124] M. PUJOL, J.M. MIRÓ, E. SHAW, et al. Daptomycin Plus Fosfomycin Versus Daptomycin Alone for Methicillin-resistant Staphylococcus aureus Bacteremia and Endocarditis: A Randomized Clinical Trial. Clin Infect Dis, 2021, 72(9):1517-1525.
[125] T.C. TSENG, Y.C. CHUANG, J.L. YANG, et al. The Combination of Daptomycin with Fosfomycin is More Effective than Daptomycin Alone in Reducing Mortality of Vancomycin-Resistant Enterococcal Bloodstream Infections: A Retrospective, Comparative Cohort Study. Infect Dis Ther, 2023, 12(2):589-606.
[126] M.C. BIRMINGHAM, C.R. RAYNER, A.K. MEAGHER, et al. Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program. Clin Infect Dis, 2003, 36(2):159-68.
[127] S. WANG, C. CAI, Y. SHEN, et al. In vitro Activity of Contezolid Against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus, and Strains With Linezolid Resistance Genes From China. Front Microbiol, 2021, 12:729900.
[128] P. CHEN, L. AN, Z. ZHANG. Sequential Therapy of Linezolid and Contezolid to Treat Vancomycin-Resistant Enterococcus faecium Pneumonia in a Centenarian Patient: Case Report. Infect Drug Resist, 2023, 16:1573-1578.
[129] Y.C. CHUANG, H.Y. LIN, P.Y. CHEN, et al. Daptomycin versus linezolid for the treatment of vancomycin-resistant enterococcal bacteraemia: implications of daptomycin dose. Clin Microbiol Infect, 2016, 22(10):890.e1-890.e7.
[130] B.S. SHUKLA, S. SHELBURNE, K. REYES, et al. Influence of Minimum Inhibitory Concentration in Clinical Outcomes of Enterococcus faecium Bacteremia Treated With Daptomycin: Is it Time to Change the Breakpoint? Clin Infect Dis, 2016, 62(12):1514-1520.
[131] F. FOOLAD, B.D. TAYLOR, S.A. SHELBURNE, et al. Association of daptomycin dosing regimen and mortality in patients with VRE bacteraemia: a review. J Antimicrob Chemother, 2018, 73(9):2277-2283.
[132] N.S. BRITT, E.M. POTTER, N. PATEL, et al. Comparative Effectiveness and Safety of Standard-, Medium-, and High-Dose Daptomycin Strategies for the Treatment of Vancomycin-Resistant Enterococcal Bacteremia Among Veterans Affairs Patients. Clin Infect Dis, 2017, 64(5):605-613.
[133] Y.C. CHUANG, H.Y. LIN, P.Y. CHEN, et al. Effect of Daptomycin Dose on the Outcome of Vancomycin-Resistant, Daptomycin-Susceptible Enterococcus faecium Bacteremia. Clin Infect Dis, 2017, 64(8):1026-1034.
[134] K. HAYAKAWA, E.T. MARTIN, U.M. GUDUR, et al. Impact of different antimicrobial therapies on clinical and fiscal outcomes of patients with bacteremia due to vancomycin-resistant enterococci. Antimicrob Agents Chemother, 2014, 58(7):3968-75.
[135] Y.C. CHUANG, H.Y. LIN, J.L. YANG, et al. Influence of daptomycin doses on the outcomes of VRE bloodstream infection treated with high-dose daptomycin. J Antimicrob Chemother, 2022, 77(8):2278-2287.
[136] M.L. BENTLEY, H.L. CORWIN, J. DASTA. Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Crit Care Med, 2010, 38(6 Suppl):S169-74.
[137] M.A. PERAZELLA, M.H. ROSNER. Drug-Induced Acute Kidney Injury. Clin J Am Soc Nephrol, 2022, 17(8):1220-1233.
[138] R.E. CAMPBELL, C.H. CHEN, C.L. EDELSTEIN. Overview of Antibiotic-Induced Nephrotoxicity. Kidney Int Rep, 2023, 8(11):2211-2225.
[139] 中国医药教育协会感染疾病专业委员会, 中华医学会呼吸病学分会, 中华医学会重症医学分会, et al. 中国多黏菌素类抗菌药物临床合理应用多学科专家共识. 中华结核和呼吸杂志, 2021(04):292-310.
[140] N. ARRAYASILLAPATORN, P. PROMSEN, K. KRITMETAPAK, et al. Colistin-Induced Acute Kidney Injury and the Effect on Survival in Patients with Multidrug-Resistant Gram-Negative Infections: Significance of Drug Doses Adjusted to Ideal Body Weight. Int J Nephrol, 2021, 2021:7795096.
[141] R.K. SHIELDS, R. ANAND, L.G. CLARKE, et al. Defining the incidence and risk factors of colistin-induced acute kidney injury by KDIGO criteria. PLoS One, 2017, 12(3):e0173286.
[142] B.K. PRASANNAN, F.C. MUKTHAR, V.N. UNNI, et al. Colistin Nephrotoxicity-Age and Baseline kidney Functions Hold the Key. Indian J Nephrol, 2021, 31(5):449-453.
[143] The Sanford guide to antimicrobial therapy (52th 2022 Edition), 2022.
[144] B.R. GRIFFIN, S. FAUBEL, C.L. EDELSTEIN. Biomarkers of Drug-Induced Kidney Toxicity. Ther Drug Monit, 2019, 41(2):213-226.
[145] N. EBERT, M.G. SHLIPAK. Cystatin C is ready for clinical use. Curr Opin Nephrol Hypertens, 2020, 29(6):591-598.
[146] C. ETHERINGTON, M. BOSOMWORTH, I. CLIFTON, et al. Measurement of urinary N-acetyl-b-D-glucosaminidase in adult patients with cystic fibrosis: before, during and after treatment with intravenous antibiotics. J Cyst Fibros, 2007, 6(1):67-73.
[147] P. WILAND, J. SZECHCIŃSKI. Proximal tubule damage in patients treated with gentamicin or amikacin. Pol J Pharmacol, 2003, 55(4):631-7.
[148] https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers.
[149] J.A. FISHMAN. Infection in Organ Transplantation. Am J Transplant, 2017, 17(4):856-879.
[150] T. AHLENSTIEL-GRUNOW, L. PAPE. Novel ways to monitor immunosuppression in pediatric kidney transplant recipients-underlying concepts and emerging data. Mol Cell Pediatr, 2021, 8(1):8.
[151] P.C. MASSAROLLO, S. MIES, E. ABDALA, et al. Immunosuppression withdrawal for treatment of severe infections in liver transplantation. Transplant Proc, 1998, 30(4):1472-4.
[152] N.K. CHOU, W.J. KO, N.H. CHI, et al. Sparing immunosuppression in heart transplant recipients with severe sepsis. Transplant Proc, 2006, 38(7):2145-6.
[153] M.B. ROBERTS, J.A. FISHMAN. Immunosuppressive Agents and Infectious Risk in Transplantation: Managing the "Net State of Immunosuppression". Clin Infect Dis, 2021, 73(7):e1302-e1317.
[154] J.A. FISHMAN, H. GANS. Pneumocystis jiroveci in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant, 2019, 33(9):e13587.
[155] N. HEMING, S. SIVANANDAMOORTHY, P. MENG, et al. Immune Effects of Corticosteroids in Sepsis. Front Immunol, 2018, 9:1736.
[156] R.A. LEE, J.T. STRIPLING, B. SPELLBERG, et al. Short-course antibiotics for common infections: what do we know and where do we go from here? Clin Microbiol Infect, 2023, 29(2):150-159.
[157] D. YAHAV, E. FRANCESCHINI, F. KOPPEL, et al. Seven Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative Bacteremia: A Noninferiority Randomized Controlled Trial. Clin Infect Dis, 2019, 69(7):1091-1098.
[158] J. MOLINA, E. MONTERO-MATEOS, J. PRAENA-SEGOVIA, et al. Seven-versus 14-day course of antibiotics for the treatment of bloodstream infections by Enterobacterales: a randomized, controlled trial. Clin Microbiol Infect, 2022, 28(4):550-557.
[159] S. AVNI-NACHMAN, D. YAHAV, E. NESHER, et al. Short versus prolonged antibiotic treatment for complicated urinary tract infection after kidney transplantation. Transpl Int, 2021, 34(12):2686-2695.
[160] J.D. GOLDMAN, K. JULIAN. Urinary tract infections in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant, 2019, 33(9):e13507.
[161] R.T. SCHOOLEY, B. BISWAS, J.J. GILL, et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrobial agents and chemotherapy, 2017, 61(10).
[162] K. DIALLO, A. DUBLANCHET. A Century of Clinical Use of Phages: A Literature Review. Antibiotics (Basel, Switzerland), 2023, 12(4).
[163] S. UYTTEBROEK, B. CHEN, J. ONSEA, et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. The Lancet. Infectious diseases, 2022, 22(8):e208-e220.
[164] Q. YANG, S. LE, T. ZHU, et al. Regulations of phage therapy across the world. Frontiers in microbiology, 2023, 14:1250848.
[165] S. ASLAM. Phage Therapy in Lung Transplantation: Current Status and Future Possibilities. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2023, 77(Supplement_5):S416-S422.
[166] A.B. GAINEY, R. DANIELS, A.K. BURCH, et al. Recurrent ESBL Escherichia coli Urosepsis in a Pediatric Renal Transplant Patient Treated With Antibiotics and Bacteriophage Therapy. Pediatr Infect Dis J, 2023, 42(1):43-46.
[167] O.M. ROSTKOWSKA, R. MIEDZYBRODZKI, D. MISZEWSKA-SZYSZKOWSKA, et al. Treatment of recurrent urinary tract infections in a 60-year-old kidney transplant recipient. The use of phage therapy. Transplant infectious disease : an official journal of the Transplantation Society, 2021, 23(1):e13391.
[168] S. KUIPERS, M.M. RUTH, M. MIENTJES, et al. A Dutch Case Report of Successful Treatment of Chronic Relapsing Urinary Tract Infection with Bacteriophages in a Renal Transplant Patient. Antimicrobial agents and chemotherapy, 2019, 64(1).
[169] 中国噬菌体研究联盟, 中国生物工程学会噬菌体技术专业委员会, 中国微生物学会医学微生物学与免疫学专业委员会. 噬菌体治疗中国专家建议. 中华传染病杂志, 2023, 41(10):631-639.
[170] R.M. DEDRICK, K.G. FREEMAN, J.A. NGUYEN, et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nature medicine, 2021, 27(8):1357-1361.
[171] K.J. DERY, A. GORSKI, R. MIEDZYBRODZKI, et al. Therapeutic Perspectives and Mechanistic Insights of Phage Therapy in Allotransplantation. Transplantation, 2021, 105(7):1449-1458.
[172] 吴楠楠, 朱同玉. 噬菌体在实体器官移植中的应用. 器官移植, 2019, 10(4):410-415.